Rachel

## Khan Academy on a Stick

### Disc method

You know how to use definite integrals to find areas under curves. We now take that idea for "spin" by thinking about the volumes of things created when you rotate functions around various lines. This tutorial focuses on the "disc method" and the "washer method" for these types of problems.

### Shell method

You want to rotate a function around a vertical line, but do all your integrating in terms of x and f(x), then the shell method is your new friend. It is similarly fantastic when you want to rotate around a horizontal line but integrate in terms of y.

### Solid of revolution volume

Using definite integration, we know how to find the area under a curve. But what about the volume of the 3-D shape generated by rotating a section of the curve about one of the axes (or any horizontal or vertical line for that matter). This in an older tutorial that is now covered in other tutorials. This tutorial will give you a powerful tool and stretch your powers of 3-D visualization!