Rachel

## Khan Academy on a Stick

### Limits

Limits are the core tool that we build upon for calculus. Many times, a function can be undefined at a point, but we can think about what the function "approaches" as it gets closer and closer to that point (this is the "limit"). Other times, the function may be defined at a point, but it may approach a different limit. There are many, many times where the function value is the same as the limit at a point. Either way, this is a powerful tool as we start thinking about slope of a tangent line to a curve. If you have a decent background in algebra (graphing and functions in particular), you'll hopefully enjoy this tutorial!

### Old limits tutorial

This tutorial covers much of the same material as the "Limits" tutorial, but does it with Sal's original "old school" videos. The sound, resolution or handwriting isn't as good, but some people find them more charming.

### Limits and infinity

You have a basic understanding of what a limit is. Now, in this tutorial, we can explore situation where we take the limit as x approaches negative or positive infinity (and situations where the limit itself could be unbounded).

### Squeeze theorem

If a function is always smaller than one function and always greater than another (i.e. it is always between them), then if the upper and lower function converge to a limit at a point, then so does the one in between. Not only is this useful for proving certain tricky limits (we use it to prove lim (x → 0) of (sin x)/x, but it is a useful metaphor to use in life (seriously). :) This tutorial is useful but optional. It is covered in most calculus courses, but it is not necessary to progress on to the "Introduction to derivatives" tutorial.

### Epsilon delta definition of limits

This tutorial introduces a "formal" definition of limits. So put on your ball gown and/or tuxedo to party with Mr. Epsilon Delta (no, this is not referring to a fraternity). This tends to be covered early in a traditional calculus class (right after basic limits), but we have mixed feelings about that. It is cool and rigorous, but also very "mathy" (as most rigorous things are). Don't fret if you have trouble with it the first time. If you have a basic conceptual understanding of what limits are (from the "Limits" tutorial), you're ready to start thinking about taking derivatives.